Regressions with Berkson errors in covariates – A nonparametric approach
نویسندگان
چکیده
This paper establishes that so-called instrumental variables enable the identification and the estimation of a fully nonparametric regression model with Berkson-type measurement error in the regressors. An estimator is proposed and proven to be consistent. Its practical performance and feasibility are investigated via Monte Carlo simulations as well as through an epidemiological application investigating the effect of particulate air pollution on respiratory health. These examples illustrate that Berkson errors can clearly not be neglected in nonlinear regression models and that the proposed method represents an effective remedy.
منابع مشابه
Model Checking in Partial Linear Regression Models with Berkson Measurement Errors
This paper discusses the problem of fitting a parametric model to the nonparametric component in partially linear regression models when covariates in parametric and nonparametric parts are subject to Berkson measurement errors. The proposed test is based on the supremum of a martingale transform of a certain partial sum process of calibrated residuals. Asymptotic null distribution of this tran...
متن کاملNonparametric Estimators in Long-horizon regressions with nonstationary covariates
We consider predictability in long-horizon regression models with nonstationary predictors. The predictability is represented as the limiting form of the sum of covariances between long-horizon regressand and ...rst di¤erences of integrated covariates. Kernel-based nonparametric estimator for predictability is considered. Asymptotic mean squared errors and normality of the estimator are present...
متن کاملNonparametric Function Estimation Involving Errors-in-variables
We examine the effect of errors in covariates in rionparametric function estimation. These functions include densities, regressions and conditional quantiles. To estimate these functions, we use the idea of deconvoluting kernels in conjunction with the ordinary kernel methods. We also discuss a new class of function estimators based on local polynomials. oAbbreviated title. Error-in-variable re...
متن کاملNon-Gaussian Berkson errors in bioassay.
The experimental design plays an important role in every experimental study. However, if errors in the settings of the studied factors cannot be avoided, i.e. Berkson errors occur, the estimates of the model parameters may be biased and the variability in the study increased. Correction methods for the effect of Berkson errors are compared. The emphasis is on the study of correlated Berkson err...
متن کاملA Bayesian Semiparametric Model for Case - ControlStudies with Errors
We develop a model and a numerical estimation scheme for a Bayesian approach to inference in case-control studies with errors in covariables. The model proposed in this paper is based on a nonparametric model for the unknown joint distribution for the missing data, the observed covariates and the proxy. This nonparametric distribution deenes the measurement error component of the model which re...
متن کامل